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7.10.1 Theorem of parallel axes

This theorem is applicable to a body of any
shape. It allows to find the moment of inertia of
a body about any axis, given the moment of
inertia of the body about a parallel axis through
the centre of mass of the body. We shall only
state this theorem and not give its proof. We
shall, however, apply it to a few simple situations
which will be enough to convince us about the
usefulness of the theorem. The theorem may
be stated as follows:

The moment of inertia of a body about any
axis is equal to the sum of the moment of
inertia of the body about a parallel axis passing
through its centre of mass and the product of
its mass and the square of the distance
between the two parallel axes. As shown in
the Fig. 7.31, z and z′ are two parallel axes,
separated by a distance a. The z-axis passes
through the centre of mass O of the rigid body.
Then according to the theorem of parallel axes

I
z′

 = I
z 
+ Ma2 (7.37)

where I
z
  and  I

z′ are the moments of inertia of the
body about the z and z′ axes respectively, M is the
total mass of the body and a is the perpendicular
distance between the two parallel axes.

Example 7.11  What is the moment of
inertia of a rod of mass M, length l about
an axis perpendicular to it through one
end?

Answer    For the rod of mass M and length l,
I = Ml2/12. Using the parallel axes theorem,
I′ = I + Ma2 with  a = l/2  we get,

22 2

12 2 3

l l Ml
I M M

 ′ = + = 
 

We can check this independently since I is
half the moment of inertia of a rod of mass 2M

and length 2l about its midpoint,

2 24 1
2 .

12 2 3

l Ml
I M′ = × = t

Example 7.12 What is the moment of
inertia of a ring about a tangent to the
circle of the ring?

Answer
The tangent to the ring in the plane of the ring
is parallel to one of the diameters of the ring.

The distance between these two parallel axes is
R, the radius of the ring. Using the parallel axes
theorem,

Fig. 7.32
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7.11 KINEMATICS OF ROTATIONAL MOTION
ABOUT A FIXED AXIS

We have already indicated the analogy between
rotational motion and translational motion. For

example, the angular velocity ωωωωω plays the same
role in rotation as the linear velocity v in
translation. We wish to take this analogy

further. In doing so we shall restrict the
discussion only to rotation about fixed axis. This

case of motion involves only one degree of
freedom, i.e., needs only one independent
variable to describe the motion. This in

translation corresponds to linear motion. This
section is limited only to kinematics. We shall

turn to dynamics in later sections.

We recall that for specifying the angular
displacement of the rotating body we take any
particle like P (Fig.7.33) of the body. Its angular
displacement θ in the plane it moves is the
angular displacement of the whole body; θ is
measured from a fixed direction in the plane of

motion of P, which we take to be the x′-axis,

chosen parallel to the x-axis. Note, as shown,
the axis of rotation is the z – axis and the plane
of the motion of the particle is the x - y plane.
Fig. 7.33 also shows θ

0
, the angular

displacement at t = 0.

We also recall that the angular velocity is
the time rate of change of angular displacement,
ω = dθ/dt. Note since the axis of rotation is fixed,
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there is no need to treat angular velocity as a

vector. Further, the angular acceleration, α =

dω/dt.

The kinematical quantities in rotational
motion, angular displacement (θ), angular
velocity (ω) and angular acceleration (α)
respectively are analogous to kinematic
quantities in linear motion, displacement (x ),
velocity (v) and acceleration (a). We know the
kinematical equations of linear motion with
uniform (i.e. constant) acceleration:

v = v
0
 + at (a)

2
0 0

1

2
x x t atυ= + + (b)

2 2
0 2axυ υ= + (c)

where x
0
 = initial displacement and v

0
= initial

velocity. The word ‘initial’ refers to values of the
quantities at t = 0

The corresponding kinematic equations for
rotational motion with uniform angular
acceleration are:

0 t= +ω ω α (7.38)

2
0 0

1

2
t t= + +θ θ ω α (7.39)

and 2 2
0 02 ( – )= +ω ω α θ θ (7.40)

where θ
0
= initial angular displacement of the

rotating body, and ω
0 
= initial angular velocity

of the body.

Fig.7.33 Specifying the angular position of a rigid

body.

Example 7.13  Obtain Eq. (7.38) from first
principles.

Answer   The angular acceleration is uniform,
hence

d

d
constant

t

ω
α= = (i)

Integrating this equation,

ω α= +∫ dt c

   (as is constant)t cα α= +
At t = 0,  ω = ω

0 
(given)

From (i) we get at t = 0, ω = c = ω
0

Thus, ω = αt + ω
0 
 as required.

With the definition of ω = dθ/dt we may
integrate Eq. (7.38) to get Eq. (7.39). This
derivation and the derivation of Eq. (7.40) is
left as an exercise.

Example 7.14  The angular speed of a
motor wheel is increased from 1200 rpm
to 3120 rpm in 16 seconds. (i) What is its
angular acceleration, assuming the
acceleration to be uniform? (ii) How many
revolutions does the engine make during
this time?

Answer
(i) We shall use ω = ω

0 
+ αt

ω
0
 =  initial angular speed in rad/s

=  2π × angular speed in rev/s

=  
2 angular speed in rev/min 

60 s/min

π ×

=  
2 1200 

rad/s
60

π ×

= 40π  rad/s

Similarly ω = final angular speed in rad/s

= 
2 3120 

rad/s
60

π ×

= 2π × 52 rad/s

= 104 π rad/s

∴ Angular acceleration

0

t

ω ω
α

−
= = 4 π  rad/s2
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The angular acceleration of the engine

= 4π rad/s2

(ii) The angular displacement in time t is
given by

2
0

1

2
t tθ ω α= +

21
(40 16 4 16 )

2
π π= × + × ×  rad

(640 512 )π π= +  rad

= 1152π rad

Number of revolutions = 
1152

576
2

π
π

=      t

7.12 DYNAMICS OF ROTATIONAL MOTION
ABOUT A FIXED AXIS

Table 7.2 lists quantities associated with linear
motion and their analogues in rotational motion.
We have already compared kinematics of the
two motions. Also, we know that in rotational
motion moment of inertia and torque play the
same role as mass and force respectively in
linear motion. Given this we should be able to
guess what the other analogues indicated in the
table are. For example, we know that in linear
motion, work done is given by F dx, in rotational

motion about a fixed axis it should be dτ θ ,

since we already know the correspondence

d dx θ→  and F τ→ . It is, however, necessary

that these correspondences are established on
sound dynamical considerations. This is what
we now turn to.

Before we begin, we note a simplification
that arises in the case of rotational motion
about a fixed axis. Since the axis is fixed, only
those components of torques, which are along
the direction of the fixed axis need to be
considered in our discussion. Only these
components can cause the body to rotate about
the axis. A component of the torque
perpendicular to the axis of rotation will tend
to turn the axis from its position. We specifically
assume that there will arise necessary forces of
constraint to cancel the effect of the
perpendicular components of the (external)
torques, so that the fixed position of the axis
will be maintained. The perpendicular
components of the torques, therefore need not
be taken into account. This means that for our
calculation of torques on a rigid body:

(1) We need to consider only those forces that
lie in planes perpendicular to the axis.
Forces which are parallel to the axis will
give torques perpendicular to the axis and
need not be taken into account.

(2) We need to consider only those components
of the position vectors which are
perpendicular to the axis. Components of
position vectors along the axis will result in
torques perpendicular to the axis and need
not be taken into account.

Work done by a torque

Fig. 7.34 Work done by a force F
1 
acting on a particle

of a body rotating about a fixed axis; the

particle describes a circular path with

centre C on the axis;  arc P
1
P′

1
(ds

1
) gives

the displacement of the particle.

Figure 7.34 shows a cross-section of a rigid
body rotating about a fixed axis, which is taken
as the z-axis (perpendicular to the plane of the
page; see Fig. 7.33). As said above we need to
consider only those forces which lie in planes
perpendicular to the axis. Let F

1
 be one such

typical force acting as shown on a particle of
the body at point P

1
 with its line of action in a

plane perpendicular to the axis. For convenience
we call  this to be the x′–y′ plane (coincident
with the plane of the page). The particle at P

1

describes a circular path of radius r
1
 with centre

C on the axis; CP
1
 = r

1
.

In time ∆t, the point moves to the position
P

1
′. The displacement of the particle ds

1
,

therefore, has magnitude ds
1
 = r

1
dθ and

direction tangential at P
1
 to the circular path

as shown. Here dθ is the angular displacement

of the particle, dθ = 1 1P CP∠ ′ .The work done by

the force on the particle is

dW
1
 = F

1
. ds

1
= F

1
ds

1
 cosφ

1
= F

1
(r

1 
dθ)sinα

1

where φ
1
 is the angle between F

1
 and the tangent

2021-22



170 PHYSICS

at P
1,
 and α

1
 is the angle between  F

1 
and the

radius vector OP
1
; φ

1
 + α

1
 = 90°.

The torque due to F
1 

about the origin is
OP

1 
× F

1
. Now OP

1
 = OC + OP

1
. [Refer to

Fig. 7.17(b).] Since OC is along the axis, the
torque resulting from it is excluded from our
consideration. The effective torque due to F

1
 is

τττττ
1
= CP × F

1
; it is directed along the axis of rotation

and has a magnitude τ
1
= r

1
F

1 
sinα , Therefore,

dW
1
 = τ

1
dθ

If there are more than one forces acting on
the body, the work done by all of them can be
added to give the total work done on the body.
Denoting the magnitudes of the torques due to
the different forces as τ

1
, τ

2
, …  etc,

1 2d ( ...)dW τ τ θ= + +

Remember, the forces giving rise to the
torques act on different particles, but the

angular displacement dθ is the same for all

particles. Since all the torques considered are
parallel to the fixed axis, the magnitude τ of the
total torque is just the algebraic sum of the
magnitudes of the torques, i.e., τ = τ1 + τ2 + .....
We, therefore, have

d dW τ θ= (7.41)

This expression gives the work done by the
total (external) torque τ which acts on the body
rotating about a fixed axis. Its similarity with
the corresponding expression

dW= F ds

for linear (translational) motion is obvious.

Dividing both sides of Eq. (7.41) by dt gives

d d

d d

W
P

t t

θ
τ τω= = =

or P τω= (7.42)

This is the instantaneous power. Compare
this expression for power in the case of
rotational motion about a fixed axis with that of
power in the case of linear motion,

P = Fv

In a perfectly rigid body there is no internal
motion. The work done by external torques is
therefore, not dissipated and goes on to increase
the kinetic energy of the body. The rate at which
work is done on the body is given by Eq. (7.42).
This is to be equated to the rate at which kinetic
energy increases. The rate of increase of kinetic
energy is

d

d

d

dt

I
I

t

ω ω ω
2

2

2

2







=

( )

We assume that the moment of inertia does
not change with time. This means that the mass
of the body does not change, the body remains
rigid and also the axis does not change its
position with respect to the body.

Since d /d ,tα ω=  we get

d

dt

I
I

ω
ω α

2

2







=

Equating rates of work done and of increase
in kinetic energy,

Iτω ω α=

Table 7.2 Comparison of Translational and Rotational Motion

Linear Motion Rotational Motion about a Fixed Axis

1 Displacement x Angular displacement θ

2 Velocity v = dx/dt Angular velocity ω = dθ/dt

3 Acceleration a = dv/dt Angular acceleration α = dω/dt

4 Mass M Moment of inertia I

5 Force F = Ma Torque τ = I α

6 Work dW = F ds Work W = τ dθ

7 Kinetic energy K = Mv2/2 Kinetic energy K = Iω2/2

8 Power P = F v Power P = τω

9 Linear momentum p = Mv Angular momentum L = Iω
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Iτ α= (7.43)

Eq. (7.43) is similar to Newton’s second law
for linear motion expressed symbolically as

F = ma

Just as force produces acceleration, torque

produces angular acceleration in a body. The

angular acceleration is directly proportional to

the applied torque and is inversely proportional

to the moment of inertia of the body. In this

respect, Eq.(7.43) can be called Newton’s second

law for rotational motion about a fixed axis.

Example 7.15  A cord of negligible mass
is wound round the rim of a fly wheel of
mass 20 kg and radius 20 cm. A steady
pull of 25 N is applied on the cord as shown
in Fig. 7.35. The flywheel is mounted on a
horizontal axle with frictionless bearings.

(a) Compute the angular acceleration of
the wheel.

(b) Find the work done by the pull, when
2m of the cord is unwound.

(c) Find also the kinetic energy of the
wheel at this point. Assume that the
wheel starts from rest.

(d) Compare answers to parts (b) and (c).

Answer

Fig. 7.35

(a) We use I α = τ
the torque τ = F R

= 25 × 0.20 Nm (as R = 0.20m)

                        = 5.0 Nm

I = Moment of inertia of flywheel about its

axis 
2

2

MR
=

= 
220.0 (0.2)

2

×
 = 0.4 kg m2

α = angular acceleration
   = 5.0 N m/0.4 kg m2 = 12.5 s–2

(b) Work done by the pull unwinding 2m of the
cord

= 25 N × 2m = 50 J

(c) Let ω be the final angular velocity. The

kinetic energy gained =  
21

2
Iω ,

since the wheel starts from rest. Now,

2 2
0 02 , 0ω ω αθ ω= + =

The angular displacement θ = length of

unwound string / radius of wheel
= 2m/0.2 m = 10 rad

ω
2 22 12 5 10 0 250= × × =. . )(rad/s

∴

(d) The answers are the same, i.e. the kinetic energy
gained by the wheel = work   done by the force.
There is no loss of energy due to friction.   t

7.13 ANGULAR MOMENTUM IN CASE OF
ROTATION ABOUT A FIXED AXIS

We have studied in section 7.7, the angular
momentum of a system of particles. We already
know from there that the time rate of total
angular momentum of a system of particles
about a point is equal to the total external torque
on the system taken about the same point. When
the total external torque is zero, the total angular
momentum of the system is conserved.

We now wish to study the angular momentum
in the special case of rotation about a fixed axis.
The general expression for the total angular
momentum of the system of n particles is

L r p= ×
=
∑ i i

i

N

1
(7.25b)

We first consider the angular momentum of
a typical particle of the rotating rigid body. We
then sum up the contributions of individual
particles to get L of the whole body.

For a typical particle l = r × p. As seen in the
last section r = OP = OC + CP [Fig. 7.17(b)]. With
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